收藏
课程目录
1.1 伟大的计算原理
1.2 计算思维的结构
1.3 难度、复杂度与能力
1.4 SOLO分类法
2.1 汉诺塔问题
2.2 证比求易算法和P=NP?
2.3 RSA公开密钥密码系统
2.4 旅行商问题与组合爆炸
2.5 GOTO与程序结构
2.6 “哲学家共餐”问题在计算机系统中的体现
2.7 两军问题
2.8 图灵测试
2.9 Raptor使用介绍
2.10 停机问题
2.11 找零问题、背包问题与贪婪算法
3.1“学生选课”实例
3.2 自然语言与形式语言
3.3 自然语言形式化及实例
3.4 图灵机的工作原理
3.5 VComputer软件的演示、说明及下载使用
3.6 虚拟机与分层抽象
4.1 递归与迭代
4.2.1 递归算法与迭代算法
4.2.2 蒙特卡洛方法求π的程序示例
4.3 随机数和蒙特卡罗方法
4.4 数学与计算机科学的不同
4.5 充分条件和必要条件
4.6 猜姓氏游戏和猴子吃桃问题
5.1 算法的基本知识
5.2 两个常见的算法
5.3 数据结构
5.4 数据的存储和表示
5.5.1 一维数组热身实验
5.5.2 二路归并排序算法
5.6 编码
6.1 系统同构
6.2.1 建数据库、建表及建立表间关系
6.2.2 创建查询
6.2.3 创建窗体
6.2.4 制作报表
6.2.5 热身实验前两问解析
6.2.6 热身实验第三问解析
6.2.7 进阶实验解析
6.3 人固有能力的局限性及使用工具后产生的力量
6.4 软件开发的系统化方法需要遵循的基本原则
7.1 道德选择
7.2 与检举有关的内容
7.3 割圆术问题
7.4 森林火灾的计算问题
7.5 多普勒效应
7.6 小世界网络
7.7 科赫曲线
7.8 向日葵种子生长模拟
7.9 烟花模拟问题
7.10 俄罗斯方块游戏
课程详情
本课程注重计算思维的核心概念,以及核心概念之间的逻辑关系,并借助大量的典型案例,为各学科与计算的交叉融合在思维层面上搭建一座沟通的桥梁。(桂林电子科技大学)
本课程注重计算思维的核心概念,以及核心概念之间的逻辑关系,并借助大量的典型案例,为各学科与计算的交叉融合在思维层面上搭建一座沟通的桥梁。(桂林电子科技大学)
本课程注重计算思维的核心概念,以及核心概念之间的逻辑关系,并借助大量的典型案例,为各学科与计算的交叉融合在思维层面上搭建一座沟通的桥梁。(桂林电子科技大学)
上一篇:计算概论与程序设计基础
下一篇:组合数学