收藏
人教版七年级数学下册《平行线的性质》相交线与平行线PPT优秀课件,共19页。知识点 平行线的性质11. 性质1:两条平行线被第三条直线所截,同位角相等 .简单说成:两直线平行,同位角相等.表达方式:如图5.3-1,因为a ∥ b(已知),所以∠ 1= ∠ 2(两直线平行,同位角相等).2. 平行线的性质与平行线的判定的区别:(1)平行线的判定是根据两角的数量关系得到两条直线的位置关系,而平行线的性质是根据两条直线的位置关系得到两角的数量关系;(2)平行线的判定的条件是平行线的性质的结论,而平行线的判定的结论是平行线的性质的条件.两条直线平行是前提,只有在这个前提下才有同位角相等;格式书写时,顺序不能颠倒,与判定不能混淆.例1,把三角尺的直角顶点放在直尺的一边上,若∠ 1=30°,则∠ 2 的度数为( )A.60°B.50°C.40°D.30°解题秘方:根据直尺的对边平行,利用平行线的性质建立已知角∠ 1 与待求的角∠ 2 之间的数量关系.解:∵∠ 1+ ∠ BAC+ ∠ DAB=180°,∠ BAC=90°,∠ 1=30°,∴∠ DAB=180°-∠ 1-∠ BAC=60°.∵直尺的对边平行,即EF ∥ AD,∴ ∠ 2= ∠ DAB=60°.1-1.[中考•柳州] 如图,直线a,b 被直线c 所截,若a ∥ b,∠ 1=70 °,则∠ 2 的度数是( )A. 50°B. 60°C. 70°D. 110°知识点 平行线的性质21. 性质2:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.2. 表达方式:,因为a ∥ b(已知),所以∠ 1= ∠ 2(两直线平行,内错角相等).并不是所有的内错角都相等,只有在“两直线平行”的前提下,才有内错角相等.如图5.3-4,AB ∥ CD,BE 平分∠ ABC,CF 平分 例2∠ BCD,你能发现BE 和CF 有何特殊的位置关系吗?说说你的理由.解题秘方:由两直线平行得到内错角相等,再由内错角相等得到两直线平行.解:BE∥CF.理由如下:∵ AB∥CD(已知),∴∠ ABC= ∠ BCD (两直线平行,内错角相等).∵ BE 平分∠ ABC,CF 平分∠ BCD (已知),∴∠ 2= ∠ ABC,∠ 1= ∠ BCD (角平分线的定义).∴∠ 2= ∠ 1. ∴ BE ∥ CF (内错角相等,两直线平行).2-1. 如图,已知AB ∥CD,∠ ADC= ∠ ABC.试说明∠ E= ∠ F.解:∵AB∥CD,∴∠ABC=∠DCF.又∵∠ADC=∠ABC,∴∠ADC=∠DCF,∴DE∥BF.∴∠E=∠F.知识点 平行线的性质31. 性质3:两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.2. 表达方式:因为a ∥ b(已知),所以∠ 1+ ∠ 2=180° (两直线平行,同旁内角互补).两直线平行时,同旁内角是互补的关系而不是相已知:如图5.3-6,直线a ∥ b,∠ 1=50°,∠ 2= ∠ 3,则∠ 2 的度数为( )A.50°B.60°C.65°D.75°解题秘方:由平行线的性质找出∠ 1 与∠ 2和∠ 3 之间的数量关系,利用∠ 1 的度数求出∠ 2 的度数.解:∵ a ∥ b, ∴∠ 1+ ∠ 2+ ∠ 3=180°.又∵∠ 1=50°,∴∠ 2+ ∠ 3=130°. ∴∠ 2=65°.3-1.如图,l1 ∥l2,∠ 1=38°,∠ 2=46 °, 则∠ 3 的度数为( )A. 46°B. 90°C. 96°D. 134°... ... ...关键词:平行线的性质PPT课件免费下载,相交线与平行线PPT下载,.PPTX格式; 本作品中主体文字及图片可替换修改,文字修改可直接点击文本框进行编辑,图片更改可选中图片后单击鼠标右键选择更换图片,也可根据自身需求增加和删除作品中的内容,源文件无水印。如认为该内容涉嫌侵权,可通过邮件提出书面通知,我们将及时处理。