互教网(hujw.com),让工作学习更简单!
首页 > PPT课件 > 数学课件 >  《习题课 单调性与奇偶性的综合应用》函数的概念与性质PPT
收藏



《习题课 单调性与奇偶性的综合应用》函数的概念与性质PPT第一部分内容:课标阐释1.理解函数奇偶性与单调性的关系.2.能运用函数的单调性与奇偶性等解决比较大小、求最值、解不等式等综合问题.... ... ...习题课单调性与奇偶性的综合应用PPT,第二部分内容:自主预习奇、偶函数在对称区间上的单调性1.(1)已知函数y=f(x)在R上是奇函数,且在(0,+∞)是增函数.那么y=f(x)在它的对称区间(-∞,0)上单调性如何?提示:奇函数的图象关于坐标原点对称,所以在两个对称的区间上单调性相同.即y=f(x)在它的对称区间(-∞,0)上单调递增.(2)你能用函数单调性的定义证明上面的结论吗?提示:∀x1,x2∈(-∞,0),且x1<x2,则-x1>-x2>0,∵y=f(x)在(0,+∞)上是增函数,∴f(-x1)>f(-x2).∵y=f(x)在R上是奇函数,∴f(-x1)=-f(x1),f(-x2)=-f(x2),∴-f(x1)>-f(x2),∴f(x1)<f(x2).∴函数y=f(x)在(0,+∞)上是增函数.(3)已知函数y=f(x)在R上是偶函数,且在(0,+∞)是减函数,y=f(x)在它的对称区间(-∞,0)上是增函数还是减函数?提示:偶函数的图象关于y轴对称,所以在两个对称的区间上单调性相反.即y=f(x)在它的对称区间(-∞,0)上单调递增.(4)你能用函数单调性的定义证明上面的结论吗?提示:∀x1,x2∈(-∞,0),且x1<x2,则-x1>-x2>0,∵y=f(x)在(0,+∞)上是减函数,∴f(-x1)<f(-x2).∵y=f(x)在R上是偶函数,∴f(-x1)=f(x1),f(-x2)=f(x2),∴f(x1)<f(x2).∴函数y=f(x)在(0,+∞)上是增函数.2.填空(1)若函数f(x)是奇函数,且f(x)在区间[a,b]上是单调函数,则f(x)在其对称区间[-b,-a]上也是单调的,且单调性相同.(2)若函数f(x)是偶函数,且f(x)在区间[a,b]上是单调函数,则f(x)在其对称区间["−" 𝑏",−" 𝑎]上也是单调的,且单调性相反.3.做一做(1)若奇函数f(x)在[-6,-2]上是减函数,且最小值是1,则它在[2,6]上是(  )A.增函数且最小值是-1B.增函数且最大值是-1C.减函数且最大值是-1D.减函数且最小值是-1解析:∵奇函数f(x)在[-6,-2]上是减函数,且最小值是1,∴函数f(x)在[2,6]上是减函数且最大值是-1.答案:C(2)若偶函数f(x)在(-∞,0]上是增函数,则f(-5),f( ),f(-2),f(4)的大小关系为___________________________.解析:因为f(x)是偶函数,且在(-∞,0]上是增函数,所以f(x)在[0,+∞)上是减函数,且f(-5)=f(5),f(-2)=f(2).因为√3<2<4<5,所以f(5)<f(4)<f(2)<f(√3).故f(-5)<f(4)<f(-2)<f(√3).... ... ...习题课单调性与奇偶性的综合应用PPT,第三部分内容:探究学习应用函数的单调性与奇偶性判定函数值的大小例1 已知偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是(  )A.f(π)>f(-3)>f(-2)B.f(π)>f(-2)>f(-3)C.f(π)<f(-3)<f(-2)D.f(π)<f(-2)<f(-3)解析:∵f(x)在R上是偶函数,∴f(-2)=f(2),f(-3)=f(3).∵2<3<π,且f(x)在区间[0,+∞)上为增函数,∴f(2)<f(3)< f(π),∴f(-2)<f(-3)<f(π).故选A.答案:A反思感悟应用函数的单调性与奇偶性判断函数值的大小时,先利用函数的奇偶性将自变量转化到同一个单调区间上,再根据函数的单调性对函数值的大小作出比较.延伸探究(1)若将本例中的“增函数”改为“减函数”,其他条件不变,则f(-2),f(π),f(-3)的大小关系如何?(2)若将本例中的“偶函数”改为“奇函数”,其他条件不变,比较这三个数的大小.解:(1)因为当x∈[0,+∞)时,f(x)是减函数,所以有f(2)>f(3)>f(π).又因为f(x)是R上的偶函数,所以f(-2)=f(2),f(-3)=f(3),从而有f(-2)>f(-3)>f(π).(2)因为函数为定义在R上的奇函数,且在[0,+∞)上为增函数,所以函数在R上是增函数,因为-3<-2<π,所以f(-3)<f(-2)<f(π).... ... ...习题课单调性与奇偶性的综合应用PPT,第四部分内容:思维辨析判断抽象函数的奇偶性典例已知函数f(x),x∈R,若对于任意实数a,b都有f(a+b)=f(a)+f(b),求证:函数f(x)为奇函数.证明:由题意可知,函数的定义域为R,关于原点对称.令a=0,则f(b)=f(0)+f(b),∴f(0)=0.又令a=-x,b=x,代入,得f(-x+x)=f(-x)+f(x),即0=f(-x)+f(x),∴f(-x)=-f(x),∴函数f(x)为奇函数.反思感悟 判断抽象函数的奇偶性主要是利用赋值法,并结合已知条件寻找f(-x)与f(x)的关系,从而得出结论.变式训练已知函数f(x),x∈R,若对于任意实数x1,x2,都有f(x1+x2)+f(x1-x2)=2f(x1)·f(x2),求证:函数f(x)为偶函数.证明:令x1=0,x2=x,得f(x)+f(-x)=2f(0)f(x).①令x2=0,x1=x,得f(x)+f(x)=2f(0)f(x).②由①②得f(x)+f(-x)=f(x)+f(x),即f(-x)=f(x),所以函数f(x)为偶函数.... ... ...习题课单调性与奇偶性的综合应用PPT,第五部分内容:随堂演练1.若f(x)是定义在[-6,6]上的偶函数,且f(4)>f(1),则下列各式一定成立的是(  )A.f(0)<f(6)B.f(4)>f(3) C.f(2)>f(0) D.f(-1)<f(4)解析:∵f(x)是定义在[-6,6]上的偶函数,∴f(-1)=f(1).又f(4)>f(1),f(4)>f(-1).答案:D2.若f(x)满足f(-x)=f(x),且f(x)在(-∞,-1]上是增函数,则(  )A.f("-" 3/2)<f(-1)<f(2)B.f(-1)<f("-" 3/2)<f(2)C.f(2)<f(-1)<f("-" 3/2)D.f(2)<f("-" 3/2)<f(-1)解析:∵f(-x)=f(x),∴f(2)=f(-2),∵-2<-3/2<-1,又f(x)在(-∞,-1]上是增函数,∴f(-2)<f("-" 3/2)<f(-1).故选D.答案:D... ... ...关键词:高中人教A版数学必修一PPT课件免费下载,习题课单调性与奇偶性的综合应用PPT下载,函数的概念与性质PPT下载,.PPT格式; 本作品中主体文字及图片可替换修改,文字修改可直接点击文本框进行编辑,图片更改可选中图片后单击鼠标右键选择更换图片,也可根据自身需求增加和删除作品中的内容,源文件无水印。如认为该内容涉嫌侵权,可通过邮件提出书面通知,我们将及时处理。
204520
领取福利

微信扫码领取福利

微信扫码分享