收藏
北师大版八年级数学上册《认识无理数》实数PPT免费下载(第2课时),共25页。素养目标1.借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想.2.无理数概念的建立及估算,会判断一个数是有理数还是无理数.探究新知无理数的概念讨论一 面积为2的正方形的边长a究竟是多少呢?(1)如图所示,三个正方形的边长之间有怎样的大小关系?说说你的理由.(2)边长a的整数部分是几?十分位是几?百分位呢?千分位呢?……借助计算器进行探索.(3)小明将他的探索过程整理如下,你的结果呢?思考 a的范围在哪两个数之间?左面的边长中,前面的数值和后面的数值相比,哪个更接近正方形的实际边长?【归纳总结】a 是介于1和2之间的一个数,既不是整数,也不是分数,则a一定不是有理数.如果写成小数形式,它是有限小数吗?事实上,a=1.41421356…,它是一个无限不循环小数.用上面的方法估计面积为5的正方形的边长b的值.边长b会不会算到某一位时,它的平方恰好等于5?如果b算到某一位时,它的平方恰好等于5,即b是一个有限小数,那么它的平方一定是一个有限小数,而不可能是5,所以b不可能是有限小数.事实上,b=2.236 067 978…它是一个无限不循环小数.同样,对于体积为2的正方体,借用计算器,可以得到它的棱长c=1.259 921 05…,它也是一个无限不循环小数.讨论二 把下列各数表示成小数,你发现了什么?3,"4" /"5" , "5" /"9" ,-"8" /"45" , "2" /"11"分数化成小数,最终此小数的形式有哪几种情况?分数只能化成有限小数或无限循环小数,即任何有限小数或无限循环小数都是有理数.像0.585885888588885…,1.41421356…,-2.2360679…等这些数的小数位数都是无限的,并且不是循环的,它们都是无限不循环小数.我们把无限不循环小数称为无理数.(圆周率π=3.14159265…也是一个无限不循环小数,故π是无理数).你能找到其他的无理数吗?无理数的估计面积为3的正方形的边长为a.(1)a的整数部分是几?(2)估计a的值.(结果精确到百分位)分析:利用“夹逼法”进行估计即可.... ... ...关键词:认识无理数PPT课件免费下载,实数PPT下载,.PPTX格式; 本作品中主体文字及图片可替换修改,文字修改可直接点击文本框进行编辑,图片更改可选中图片后单击鼠标右键选择更换图片,也可根据自身需求增加和删除作品中的内容,源文件无水印。如认为该内容涉嫌侵权,可通过邮件提出书面通知,我们将及时处理。